348 research outputs found

    An Age Constraint for the Very Low-Mass Stellar/Brown Dwarf Binary 2MASS J03202839-0446358AB

    Full text link
    2MASS J03202839-0446358AB is a recently identified, late-type M dwarf/T dwarf spectroscopic binary system for which both the radial velocity orbit for the primary and spectral types for both components have been determined. By combining these measurements with predictions from four different sets of evolutionary models, we determine a minimum age of 2.0+/-0.3 Gyr for this system, corresponding to minimum primary and secondary masses of 0.080 Msun and 0.053 Msun, respectively. We find broad agreement in the inferred age and mass constraints between the evolutionary models, including those that incorporate atmospheric condensate grain opacity; however, we are not able to independently assess their accuracy. The inferred minimum age agrees with the kinematics and absence of magnetic activity in this system, but not the rapid rotation of its primary, further evidence of a breakdown in angular momentum evolution trends amongst the lowest luminosity stars. Assuming a maximum age of 10 Gyr, we constrain the orbital inclination of this system to i >~ 53 degrees. More precise constraints on the orbital inclination and/or component masses of 2MASS J0320-0446AB, through either measurement of the secondary radial velocity orbit (optimally in the 1.2-1.3 micron band) or detection of an eclipse (only 0.3% probability based on geometric constraints), would yield a bounded age estimate for this system, and the opportunity to use it as an empirical test for brown dwarf evolutionary models at late ages.Comment: 8 pages, 2 figures, accepted for publication to Astonomical Journa

    The Close Binary Fraction of Dwarf M Stars

    Get PDF
    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for ~17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass

    A New Low-Mass Eclipsing Binary from SDSS-II

    Full text link
    We present observations of a new low-mass double-lined eclipsing binary system discovered using repeat observations of the celestial equator from the Sloan Digital Sky Survey II. Using near-infrared photometry and optical spectroscopy we have measured the properties of this short-period [P=0.407037(14) d] system and its two components. We find the following parameters for the two components: M_1=0.272+/-0.020 M_sun, R_1=0.268+/-0.010 R_sun, M_2=0.240+/-0.022 M_sun, R_2=0.248+/-0.0090 R_sun, T_1=3320+/-130 K, T_2=3300+/-130 K. The masses and radii of the two components of this system agree well with theoretical expectations based on models of low-mass stars, within the admittedly large errors. Future synoptic surveys like Pan-STARRS and LSST will produce a wealth of information about low-mass eclipsing systems and should make it possible, with an increased reliance on follow-up observations, to detect many systems with low-mass and sub-stellar companions. With the large numbers of objects for which these surveys will produce high-quality photometry, we suggest that it becomes possible to identify such systems even with sparse time sampling and a relatively small number of individual observations.Comment: 15 Pages, 9 Figures, 6 Tables. Replaced with version accepted to Ap

    Keck NIRSPEC Radial Velocity Observations of Late-M dwarfs

    Get PDF
    We present the results of an infrared spectroscopic survey of 23 late-M dwarfs with the NIRSPEC echelle spectrometer on the Keck II telescope. Using telluric lines for wavelength calibration, we are able to achieve measurement precisions of down to 45 m/s for our late-M dwarfs over a one to four year-long baseline. Our sample contains two stars with RV variations of >1000 m/s. While we require more measurements to determine whether these RV variations are due to unseen planetary or stellar companions or are the result of starspots known to plague the surface of M dwarfs, we can place upper limits of <40 MJsini on the masses of any companions around those two M dwarfs with RV variations of <160 m/s at orbital periods of 10-100 days. We have also measured the rotational velocities for all the stars in our late-M dwarf sample and offer our multi-order, high-resolution spectra over 2.0 to 2.4 micron to the atmospheric modeling community to better understand the atmospheres of late-M dwarfs.Comment: Accepted to Ap
    • …
    corecore